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NOTES AND DISCUSSIONS

The ground state of a particle under the influence of a uniformly

charged sphere
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(Received 25 April 1985; accepted for publication 9 November 1985)

I. INTRODUCTION

In the study of the hydrogen atom in quantum mechan-
ics, one assumes for simplicity that the proton is a point
charge, thus leading to the familiar Coulomb interaction
( — &%/r) with the electron. We see from Shankar’s book,
by using the perturbation theory, more accurate results can
be obtained by assuming the proton is a uniformly dense
charge distribution of radius R. The interaction becomes
Coulombic at > R, and harmonic-oscillator-like at » < R.
The perturbation theory is a good approximation only for
the problem with small R such as the hydrogen atom.

In this note, we have considered a system consisting of a
particle with charge e and mass m under the attraction of a
sphere of many uniformly distributed point charges with
total charge Q and radius R (see Ref. 2 for classical treat-
ment of this problem). If we allow the particle to penetrate
into the sphere, the potential form of this system is exactly
the same as the hydrogen atom with the proton being a
uniformly dense charge distribution. The problem cannot
be treated by using the perturbation theory if R becomes
large. By using a variational approximation, we have calcu-
lated bound energies of the ground state of the particle as a
function of R, the radius of the charged sphere. We have
shown that the perturbation theory to the first order’ is
valid only within the region of R < 0.1 (in Coulomb units).
The critical value of R, R, beyond which the hydrogenlike
solution dominates over the harmonic oscillator solution,
is given. When the radius of the charged sphere equals R,
the most probable position of the particle is at the surface of
the sphere.

II. CALCULATIONS
Consider the Schrédinger equation
Hy(r) = Ey(r) (N
and the potential of the charged particle,
v=~kr*/2R*® -3k /2R, r<R,
= —k/r, r>R, (2)
where k = Qe. The Hamiltonian is

H= —#V*/2m + kr*/2R> -3k /2R, r<R,
(3)
= —#WV/2m —k/r, r>R.

Noting that the wave function behaves like that of a hydro-
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gen atom as 7— oo and like that of harmonic oscillator as
r—0, so we may choose a trial wave function of the form

Y(r)=4de" ", r<R,
4)
=Be 7,

Using the conditions of continuity of wave function and its
derivative at » = R, we have @ = 8 /2R, B = Aé°?/?, and
from the normalization condition, we have

(474 %) {ePR(1 4+ 2BR) + (mR*B>*)"?
xerf[( BR)'?]} =483, (3
where erf(x) is the error function® defined as

erf(x) = (2/\7) f e ' dr.
0

Using the Coulomb units,* where the units of mass, length,
time, and energy are m, #*/mk, #°/mk %, and mk */#*, re-
spectively, all the parameters, in this paper, from now on
are dimensionless. We get from Egs. (4) and (5) that

E(B) = YH|p)=(—/4R)[F,(BY/F,(B)], (6)

where

r>R.
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Fig. 1. The logarithmic plot of the ground state energy ( — E) as a func-
tion of R.
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Fig. 2. The logarithmic plot of the AE = E — E, as a function of R for
small R. The dashed and solid lines are the results of the perturbation
theory to the first order and of the variational method, respectively.

F,(B) =2BR(5—B+[*R)e PR
— (3—6BR + 3B°R)(7BR)"?
xerf[( BR)'*], (7)
F(B) = (1+2BR)e " + (mB°R*)%erf[ ( BR)'?] .

The ground s-state energy can be obtained by taking the
derivative of Eq. (6) with respect to 8 and setting it to zero.
We find that

Fi(BYF(B)=F(BF;(B, (8)

where F[(B) (i =1,2) are the derivatives of F, with re-
spect to 8. After simple calculations, we get

F{(B)=R(7T—48—4BR + 58°R — 2B°R*)e R
—(1/283)(3 — 188R + 158°?R)
X (mBR)'*erf[ (BR)'?],
(9
Fi(B)=R(1 —BR)e ¥
+ (3R /2) (mBR)?erf[ ( BR)?] .
For a given value of R, the value of 8 can be determined

numerically from Eqgs. (7)—(9). The wave function in Eq.

1047 Am. J. Phys., Vol. 54, No. 11, November 1986

(4) and the ground s-state energy in Eq. (6) can subse-
quently be determined. The results are discussed in the fol-
lowing paragraphs.

II1. DISCUSSION

The dependence of the ground-state energy E on the ra-
dius R is displayed in the plot of log( — E) vs log R in Fig.
1. As R—0, we get, from Fig. 1, that E—~ — 1/2, which is
the ground state energy of a hydrogen atom (in Coulomb
units). From Eq. (3), as R becomes larger, the term — k /r
can be considered as a perturbation; then the ground state
energy is approximately

E=w/2—-3/2R=1/2R*? —3/2R— — 3/2R, (10)

where @ = R ~%/?is the frequency of the harmonic oscilla-

tor. The plot of log( — E) vslog R for large R should yield
astraight line of slope — 1. This is clearly demonstrated in
Fig. 1.

The plotoflog(AE) vslog R for small R is shown in Fig.
2inwhich AE =F — E,, E, = — 1/2is the exact ground-
state energy of a hydrogen atom, and E is the ground-state
energy calculated from the variational approximation.
From perturbation theory' the ground-state energy to the
first order is

E= —1/2+4+2R%/5
or
AE=E—E,=2R?%/5. (11)

The dashed and solid lines are the results of the perturba-
tion theory to the first order and of the variational method,
respectively. Note that the straight line region only goes to
about R ~0.1. This indicates that, for R <0.1, the pertur-
bation method to the first order is indeed a good approxi-
mation; beyond this region, it becomes poor or simply in-
valid. Next, we calculate the probability density function
P(r). From Eq. (4), we can write the wave function as

Y(r) =Ade P?RO(R —r)

+ APR2-Pg(r — R) (12)

where 6(x) is the step function. Using Eqs. (5) and (12),
we get

P(r) = [48%P/F,(B)1le ""RO(R —r)

+ 2= 9(r—R)] . (13)

Fig. 3. The probability distribution function P(r) vs r for three different
values of R.
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The plot of P(r) vs r for three values of R (R = 0.1, 1, and
5) is shown in Fig. 3. We see that when R = 0.1, P(r) is
very close to the probability density distribution of the s
states of a hydrogen atom. For R = 5, we get almost the
distribution corresponding to a Gaussian wave function,
which is close to the distribution of the s state of the har-
monic oscillator. For R = 1, the distribution is a composite
of these two cases. We can also see from Fig. 3 that the most
probable position of the particle 7 (P, ) (written as 7,
from now on), increases if R increases. From Eq. (13), we
can also calculate 7., as a function of R. Differentiating
Eq. (13) with respect to r and setting it equal to 0, we get

(1= /Rye Pm"Rg(R _r_ )

+ (1 =Bro, ) gy —R)=0. (14)

Equation (14) can be analyzed for the following two cases:
(i) For 7.« <R, we have

Toax = (R/B)'? (BR>1); (15)
(ii) for r,,, > R, we have
Fmax = 1/B (BR<1). (16)

Forsmall R, r,,,,, > R, the particle has the highest probabil-

ity of being found outside the sphere, which is hydrogen-
like. For large R, r,,., <R, the particle can most likely be
found in a region inside the sphere and we could call it
harmonic-oscillator-like. Finally, the physical meaning of
Foax =R (BR =1) is that the particle has the highest
probability moving around the surface of the sphere. From
the condition of SR =1 and Eq. (8), we get the critical
value of R, R, = 1.425 (in Coulomb units). We conclude
from Egs. (15) and (16) that, as R increases from R <R,
to R > R,, the wave function of the particle changes from
hydrogen-like to harmonic-oscillator-like and the most
probable position of the particle changes from outside of
the sphere to inside of the sphere. For Q = 1, in normal
units, R, = 1.425r,, where r, is the Bohr radius.
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On the relation between heat flux and temperature gradient
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The energy conservation equation for heat flow takes the
form

c(ﬂ)z—divJ, (1)
ot

where C and T are, respectively, the specific heat per unit
volume and temperature of the medium, and J is the heat
flux. If this is then combined with the Fourier conduction
equation

J= —Kgrad T, (2)

where K is the thermal conductivity, the familiar conduc-
tion equation for 7

(%) = (K/O)V'T (3)

is obtained. Now it was pointed out some years ago by
Vernotte' that Eq. (3) cannot hold exactly, since, being
parabolic, it predicts an infinite velocity of propagation
whereas the true velocity cannot exceed that of the thermal
carriers. Vernotte therefore suggested that Eq. (2) should
be modified to

J+T(—a£)= —Kgrad T, (4)
where 7 is a relaxation time. The reasoning behind this
modification is that on the one hand, Eq. (4), reduces to
Eq. (2) if the changes in J are not too rapid, and on the
other hand, Egs. (1) and (4) yield

oT  3°T (K) .
or | 9T _ (&) er, 5)
o Tz \C (

1048 Am. J. Phys., Vol. 54, No. 11, November 1986

which being a hyperbolic equation corresponds to a finite
propagation velocity. Further, it may be shown” that if this
propagation velocity is identified with that of the thermal
carriers, then 7 must be of the order of the relaxation time
for the thermal carrier interaction. Subsequently further
workers were involved in exploring the consequences of
Egs. (4) and (5) and in applying the same types of modifi-
cation to other systems.>

It is clear, however, that despite the arguments given
above, the basis for the inclusion of the terms 7(d J/dt) in
Eq. (4) is somewhat unsatisfactory, since other terms of a
more complicated nature could also meet the objections
leveled against Eq. (3). Analternative approach was there-
fore followed by Simons,* who started with a microscopic
description of the thermal carriers, and endeavored to ob-
tain from this the relevant modifications of the macroscop-
ic equations (2) and (3). This approach led however to
somewhat lengthy calculations, the result of which were to
give corrections to Eqs. (2) and (3) in the form of an infi-
nite series of progressively higher derivatives of J and 7, of
which the correction terms of lowest order gave Eqgs. (4)
and (5). The purpose of the present note is to point out that
if a certain commonly used approximation is employed for
the interaction term in the basic Boltzmann transport
equation for the thermal carriers, then the required modifi-
cation of Eq. (2) is obtained very simply, and it then takes
exactly the form given by Eq. (4).

We begin by supposing that the heat is transported in an
isotropic medium by particles whose state is specified by a
wave number k. These particles may be electrons or phon-
ons, or indeed any other form of elementary excitation
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